内容简介
本书系统地介绍了数据仓库和数据挖掘技术,全本由两部分组成,第1章到第3章介绍数据仓库的基本概念和相关技术,第4章到第11章介绍数据挖掘的基本概念和各种算法,包括数据仓库构建、OLAP技术、分类方法、聚类方法、关联分析、序列模式挖掘方法、回归和时序分析、粗糙集理论、文本挖掘、Web挖掘和空间数据挖掘方法等。
本书既注重原理,又注重实践,配有大量图表、示例和练习题,内容丰富,概念讲解清楚,表达严谨,逻辑性强,语言精练,可读性好。
本书既便于教师课堂讲授,又便于自学者阅读。适合作为高等院校学生和研究生“数据仓库和数据挖掘”或“数据挖掘算法”课程的教材。
目录
第 1 章数据仓库概述
1.1 数据仓库及其历史
1.1.1 数据库技术的发展
1.1.2 什么是数据仓库
1.2 数据仓库系统及其开发工具
1.2.1 数据仓库系统的组成
1.2.2 ETL
1.2.3 数据仓库和数据集市的关系
1.2.4 元数据及其管理
1.3 数据仓库系统开发工具
1.4 数据仓库与操作型数据库的关系
1.4.1 从数据库到数据仓库
1.4.2 数据仓库为什么是分离的
1.4.3 数据仓库与操作型数据库的对比
1.4.4 ODS
1.5 商务智能与数据仓库的关系
练习题 1
思考题 1
第 2 章数据仓库设计
2.1 数据仓库设计概述
2.1.1 数据仓库设计原则
2.1.2 数据仓库构建模式
2.1.3 数据仓库设计步骤
2.2 数据仓库的规划和需求分析
2.2.1 数据仓库的规划
2.2.2 数据仓库的需求分析
2.3 数据仓库的建模
2.3.1 多维数据模型及相关概念
VI
2.3.2 多维数据模型的实现
2.3.3 数据仓库建模的主要工作
2.3.4 几种常见的基于关系数据库的多维数据模型
2.4 数据仓库的物理模型设计
2.4.1 确定数据的存储结构
2.4.2 确定索引策略
2.4.3 确定存储分配
2.5 数据仓库的部署和维护
2.5.1 数据仓库的部署
2.5.2 数据仓库的维护
2.6 一个简单的数据仓库SDWS 设计示例
2.6.1 SDWS 的需求分析
2.6.2 SDWS 的建模
2.6.3 基于SQL Server 2008 设计SDWS
练习题 2
思考题 2
第 3 章 OLAP 技术
3.1 OLAP 概述
3.1.1 什么是OLAP
3.1.2 OLAP 技术的特性
3.1.3 OLAP 和OLTP 的区别
3.1.4 数据仓库与OLAP 的关系
3.1.5 OLAP 分类
3.2 OLAP 的多维数据模型
3.2.1 多维数据模型的定义
3.2.2 OLAP 的基本分析操作
3.2.3 一个简单的多维数据模型
3.3 OLAP 实现
3.3.1 数据立方体的有效计算
3.3.2 索引OLAP 数据
3.3.3 OLAP 查询的有效处理
练习题 3
思考题 3
第 4 章数据挖掘概述
4.1 什么是数据挖掘
4.1.1 数据挖掘的定义
4.1.2 数据挖掘的知识表示
4.1.3 数据挖掘的主要任务
4.1.4 数据挖掘的发展
VII
4.1.5 数据挖掘的对象
4.1.6 数据挖掘的分类
4.1.7 数据挖掘与数据仓库及OLAP 的关系
4.1.8 数据挖掘的应用
4.2 数据挖掘系统
4.2.1 数据挖掘系统的结构
4.2.2 数据挖掘系统的设计
4.2.3 常用的数据挖掘系统及其发展
4.3 数据挖掘过程
4.3.1 数据挖掘步骤
4.3.2 数据清理
4.3.3 数据集成
4.3.4 数据变换
4.3.5 数据归约
4.3.6 离散化和概念分层生成
4.3.7 数据挖掘的算法
4.4 数据挖掘的未来展望
练习题 4
思考题 4
第 5 章关联分析
5.1 关联分析的概念
5.1.1 事务数据库
5.1.2 关联规则及其度量
5.1.3 频繁项集
5.1.4 挖掘关联规则的基本过程
5.2 Apriori 算法
5.2.1 Apriori 性质
5.2.2 Apriori 算法
5.2.3 由频繁项集产生关联规则
5.2.4 提高Apriori 算法的有效性
5.2.5 非二元属性的关联规则挖掘
5.3 频繁项集的紧凑表示
5.3.1 频繁项集
5.3.2 频繁闭项集
5.4 FP-growth 算法
5.4.1 FP-growth 算法框架
5.4.2 FP 树构造
5.4.3 由FP 树产生频繁项集
5.5 多层关联规则的挖掘
VIII
5.5.1 多层关联规则的挖掘概述
5.5.2 多层关联规则的挖掘算法
5.5.3 多维关联规则
5.6 其他类型的关联规则
5.6.1 基于约束的关联规则
5.6.2 负关联规则
5.7 SQL Server 挖掘关联规则的示例
5.7.1 建立DM 数据库
5.7.2 建立关联挖掘项目
5.7.3 部署关联挖掘项目并浏览结