内容简介
《免疫优化算法、模型及应用》内容涉及多个领域,主要包括生物免疫机理、免疫系统动力学模型、人工免疫系统概述、否定选择算法、克隆选择算法、人工免疫网络模型、树突状细胞算法、基于生物网络的计算框架、多层免疫模型及其在故障诊断中的应用和引黄工程免疫优化调度模型及其应用。为便于读者使用和研究,书中给出了主要算法流程对应的测试结果,源程序可与作者联系获得。
《免疫优化算法、模型及应用》可供计算机科学等相关领域的本科生和研究生阅读,也可供相关科研人员阅读参考。
目录
第1章 生物免疫机理
1.1 生物免疫系统
1.1.1 生物免疫系统组成
1.1.2 生物免疫系统的几个概念
1.2 免疫系统的作用及功能
1.2.1 生物免疫防御机理
1.2.2 免疫系统的功能
1.3 生物免疫多层防御机制
1.3.1 身体屏障
1.3.2 固有免疫系统和适应性免疫系统
1.3.3 免疫细胞的相互作用及其活化信号
1.3.4 体液免疫
1.4 树突状细胞对抗原的处理及提呈
1.4.1 树突状细胞
1.4.2 树突状细胞的抗原处理与提呈功能
1.4.3 树突状细胞与免疫激活和免疫耐受
1.4.4 树突状细胞的三种状态及激活信号
1.5 生物免疫系统的重要机制
1.5.1 免疫系统的信息处理特性
1.5.2 免疫学习和记忆
1.5.3 免疫响应
1.5.4 初次响应和二次响应
1.5.5 自己/非己识别
1.6 否定选择机制
1.7 克隆选择原理
1.8 免疫网络理论
l.9 神经免疫内分泌网络学说
1.9.1 免疫、神经及内分泌系统问相互作用的物质基础
1.9.2 神经、免疫、内分泌系统间的关系
第2章 免疫系统动力学模型
2.1 抗原的动力学模型
2.2 抗体的动力学模型
2.3 免疫响应模型
2.4 自体/非自体的区别以及识别概率
2.5 克隆选择动力学模型
2.6 免疫网络模型
2.7 状态空间描述
第3章 人工免疫系统概述
3.1 基于免疫的计算智能
3.2 人工免疫系统的工程应用
3.3 免疫系统的结构
3.4 基于本免疫机制的免疫算法
第4章 否定选择算法
4.1 否定选择算法
4.1.1 否定选择算法描述
4.1.2 标准否定选择算法
4.1.3 否定选择算法过程
4.1.4 特征空间中否定选择算法概念图示
4.1.5 否定选择算法的模型描述
4.1.6 检测器的生成算法
4.2 否定选择算法应用于网络入侵检测
4.3 实值否定选择算法
4.3.1 实值否定选择算法的具体描述
4.3.2 检测器生成阶段
4.3.3 检测过程
4.4 实值否定选择算法应用
4.4.1 飞机飞行监测实例
4.4.2 实验及结果
第5章 克隆选择算法
5.1 克隆选择算法描述
5.1.1 克隆选择算法的基本过程
5.1.2 克隆选择算法伪代码
5.1.3 特征空问中克隆选择算法概念图示
5.1.4 克隆选择算法模型描述
5.2 克隆选择算法应用于优化问题
5.3 动态克隆选择算法
5.3.1 简介
5.3.2 动态克隆选择算法的运行机制
5.3.3 动态克隆选择算法的流程图
5.3.4 动态克隆选择算法的伪代码
5.4 DynaⅢics在入侵检测中的应用
5.5 一种改进的快速克隆选择算法及实验
第6章 人工免疫网络模型
6.1 通用免疫网络模型
6.2 aiNet免疫网络模型
6.2.1 模型概述
6.2.2 基本原理
6.2.3 aiNet网络模型算法
6.2.4 aiNet网络模型分析
6.3 有限资源人工免疫系统模型
6.3.1 网络定义与描述
6.3.2 ARB对象和激励值计算
6.3.3 RL&IS算法
6.4 多值免疫网络模型
6.4.1 模型中的免疫细胞
6.4.2 免疫模型
6.4.3 免疫反馈原理
6.4.4 多值免疫模型基本原理
6.5 动态免疫网络模型
6.5.1 基本思想
6.5.2 诊断的概念
6.5.3&n