内容简介
本书主要讨论线性系统理论的基础内容,研究线性系统状态的运动规律以及改变这种运动规律的可能性与基本方法。全书共分5章,分别介绍了控制系统的状态空间模型及其建立问题、线性系统的状态解和输出响应解、线性系统的能控性和能观性与结构分解及其应用、控制系统的李亚普诺夫稳定性理论,着重讨论了控制系统极点配置、观测器设计、系统解耦镇定等综合理论。各章列举了大量实际应用例题,强调了基本理论的工程实际应用。
本书适用于大学自动化、电气工程及其自动化等本科专业学生,也可供研究生、科研人员以及从事控制工程的技术人员参考。
目录
绪论
0.1 现代控制理论概述
0.1.1 控制理论的发展
0.1.2 现代控制理论与经典控制理论的不同点
0.2 本书主要内容结构
第1章 控制系统的状态空间描述
1.1 动态系统的状态空间描述
1.1.1 一般概念
1.1.2 控制系统状态空间数学描述(模型)
1.1.3 状态空间描述建模实例
1.1.4 关于状态空间描述的几点概念性结论
1.2 数学模型变换
1.2.1 经典时域模型转换为状态空间模型
1.2.2 经典频域模型转换为状态空间模型
1.3 状态变量图法
1.3.1 直接程序法
1.3.2 并接程序法
1.3.3 串接程序法
1.3.4 框图法单一回路处理法
1.4 系统的传递函数阵
1.4.1 传递函数阵Gs的推证
1.4.2 Leverner计算法
1.5 线性组合系统的状态空间描述
1.5.1 子系统的属性
1.5.2 组合系统的数学描述
1.6 离散时间系统的状态空间描述
1.6.1 由离散系统的经典模型求取
1.6.2 由连续时间系统离散化求取
习题
第2章 线性系统的运动分析
2.1 状态方程解的一般概念
2.1.1 系统特征值
2.1.2 状态方程的规范型
2.1.3 状态方程规范化的方法
2.1.4 时不变系统的矩阵指数eΑt
2.2 时不变系统的解
2.2.1 自由系统运动分析
2.2.2 强迫系统运动分析
2.3 时变系统的解
2.3.1 自由系统运动分析
2.3.2 强迫系统分析
2.4 系统响应
2.4.1 系统响应的概念
2.4.2 线性系统的脉冲响应函数矩阵
2.5 离散时间系统状态方程的解
2.5.1 迭代法(Iterative Method)
2.5.2 z变换法求解
习题
第3章 线性系统的能控性和能观性
3.1 线性系统的能控性定义
3.1.1 定义
3.1.2 对定义进一步的解释
3.1.3 关于不能控的定理
3.2 线性连续系统的能控性判据
3.2.1 线性时变系统的能控性判据
3.2.2 线性时不变系统的能控性判据
3.3 线性定常系统输出能控性
3.3.1 输出能控性定义
3.3.2 输出能控性判据
3.4 线性系统能观性定义
3.4.1 定义
3.4.2 对定义的解释
3.5 线性系统能观性判据
3.5.1 线性时变系统能观性判据
3.5.2 线性时不变系统能观性判据
3.6 系统的能控规范型和能观规范型
3.6.1 能控规范型
3.6.2 能观规范型
3.7 线性系统对偶定理
3.7.1 对偶系统
3.7.2 框图结构
3.7.3 对偶关系
3.7.4 两对偶系统特征值之间的关系
3.7.5 对偶原理(对偶定理)
3.7.6 传递函数阵
3.7.7 对偶系统的状态转移阵
3.8 系统的结构分解
3.8.1 按能控性分解
3.8.2 按能观性分解
3.8.3 标准分解
3.8.4 实现结构分解的方法
3.9 系统的实现问题
3.9.1 实现
3.9.2 实现
3.9.3 实现的应用实例
3.10 传递函数矩阵G(s)与能控能观性间的关系
3.10.1 能控能观性与系统零极点之间的关系
3.10.2 G(s)与能控能观性间关系的进一步结论
3.11 离散时间系统的能控性和能观性
3.11.1 线性时不变离散系统的状态能控性
3.11.2 线性时不变离散系统的状态能观性
3.11.3 连续系统离散化后的状态能控性和能观性