内容简介
阿夫肯著的《物理学家用的数学方法(第7版)(精)》是为具有研究生水平的读者编写的一部入门性工具书,语言简练,结构流畅,可读性很强,很受读者欢迎,本书是第7版。本版全面介绍了物理学中常用数学方法,内容涉及物理学中用到的数学内容,包括矢量/张量分析,矩阵,群论,数列与复变函数,各种特殊函数,微分方程,傅里叶分析与积分变换,非线性方法,变分法和概率论等诸多领域,是从事物理学研究和教学人员的案头必备书。 读者对象:物理、数学及相关专业的研究生和科教工作者。
目录
Preface
1 Mathematical Preliminaries
1.1 InfiniteSeries
1.2 Series ofFunctions
1.3 Binomial Theorem
1.4 Mathematical Induction
1.5 Operations on Series Expansions of Functions
1.6 Some important Series
1.7 Vectors
1.8 Complex Numbers and Functions
1.9 Derivatives andExtrema
1.10 evaluation oflntegrals
1.1 I Dirac Delta Function
AdditionaIReadings
2 Determinants and Matrices
Preface
1 Mathematical Preliminaries
1.1 InfiniteSeries
1.2 Series ofFunctions
1.3 Binomial Theorem
1.4 Mathematical Induction
1.5 Operations on Series Expansions of Functions
1.6 Some important Series
1.7 Vectors
1.8 Complex Numbers and Functions
1.9 Derivatives andExtrema
1.10 evaluation oflntegrals
1.1 I Dirac Delta Function
AdditionaIReadings
2 Determinants and Matrices
2.1 Determinants
2.2 Matrices
AdditionaI Readings
3 Vector Analysis
3.1 Review ofBasic Properties
3.2 Vectors in 3-D Space
3.3 Coordinate Transformations
3.4 Rotations in IR3
3.5 Differential Vector Operators
3.6 Differential Vector Operators: Further Properties
3.7 Vectorlntegration
3.8 Integral Theorems
3.9 PotentiaITheory
3.10 Curvilinear Coordinates
AdditionaIReadings
4 Tensors and Differential Forms
4.1 TensorAnalysis
4.2 Pseudotensors, Dual Tensors
4.3 Tensors in General Coordinates
4.4 Jacobians
4.5 DifferentialForms
4.6 DifferentiatingForms
4.7 IntegratingForms
AdditionalReadings
5 Vector Spaces
5.1 Vectors in Function Spaces
5.2 Gram-Schmidt Orthogonalization
5.3 Operators
5.4 SelfAdjointOperators
5.5 Unitaty Operators
5.6 Transformations of Operators
5.7 Invariants
5.8 Summary-Vector Space Notation
AdditionaIReadings
6 Eigenvalue Problems
6.1 EigenvalueEquations
6.2 Matrix Eigenvalue Problems
6.3 Hermitian Eigenvalue Problems
6.4 Hermitian Matrix Diagonalization
6.5 NormaIMatrices
AdditionalReadings
7 Ordinary DifTerential Equations
7.1 Introduction
7.2 First-OrderEquations
7.3 ODEs with Constant Coefficients
7.4 Second-Order Linear ODEs
7.5 Series Solutions-Frobenius ' Method
7.6 OtherSolutions
7.7 Inhomogeneous Linear ODEs
7.8 Nonlinear Differential Equations
Additional Readings
8 Sturm-Liouville Theory
8.1 Introduction
8.2 Hermitian Operators
8.3 ODE Eigenvalue Problems
8.4 Variation Method
8.5 Summary, Eigenvalue Problems
Additional Readi