内容简介
《神经生物学:从神经元到脑(原书第5版)》是神经生物学领域内的一本名著,内容涵盖了神经生物学的许多重要方面,系统介绍了神经生物学的基本概念、神经系统的功能及其细胞和分子机制。作者应用许多生动的实例,通过严密的逻辑组织起来,以展示神经生物学的发展脉络。
目录
目录摘要
第1部分 神经系统导论
第1章 信号运作和组构原理 3
第2章 视觉系统的信号处理 25
第3章 视皮层的功能构筑 49
第2部分 神经元和胶质细胞的电特性
第4章 离子通道和信号传递 71
第5章 离子通道的结构 85
第6章 静息膜电位的离子基础 111
第7章 动作电位的离子基础 125
第8章 神经元电信号 145
第9章 离子跨膜转运 159
第10章 神经胶质细胞的特性和功能 177
第3部分 细胞间通讯
第11章 直接突触传递的机制 207
第12章 突触传递的间接机制 239
第13章 神经递质的释放 273
第14章 中枢神经系统递质 309
第15章 神经递质的合成、转移、贮存和失活 345
第16章 突触可塑性 367
第4部分 整合机制
第17章 自主神经系统 389
第18章 蚂蚁、蜜蜂和水蛭行为的细胞机制 409
第5部分 感觉与运动
第19章 感觉转导 443
第20章 视网膜中视觉信号的转导与传递 469
第21章 触觉、痛觉和纹理感觉 499
第22章 听觉和前庭感觉 523
第23章 感知的构建 547
第24章 控制反射、呼吸和运动协调的环路 573
第6部分 神经系统的发育与再生
第25章 神经系统的发育 611
第26章 感觉系统的关键期 653
第27章 损伤后突触连接的再生 681
第7部分 结论
第28章 悬而未决的问题 713
目 录
第1部分 神经系统导论 1
第1章 信号运作和组构原理 3
简单神经元回路中的信号运作 4
与功能相关的复杂神经元回路 4
视网膜的组构 5
神经元的外形和连接 5
细胞体、树突和轴突 7
鉴定神经元和追踪其连接的技术 8
非神经元细胞 9
细胞按功能集群 9
连接的复杂性 9
神经细胞的信号传递 10
电信号的普遍性 10
用电极记录神经元信号的技术 11
记录和刺激神经元活动的无创伤技术 12
局部分级电位的扩布和神经元的被动电学特性 13
在双极细胞和光感受器中电位变化的扩布 15
动作电位的特性 15
动作电位沿神经纤维传播 16
动作电位作为神经密码 16
突触:细胞间通讯的部位 16
化学介导的突触传递 16
兴奋和抑制 17
电传递 18
突触效率的调制 19
整合机制 19
由动作电位传送的信息的复杂性 20
信号从中枢向低级中枢的逆向传送 21
脑的功能 21
神经元的细胞、分子生物学 21
神经系统发育的信号 22
神经系统损伤后的再生 23
第2章 视觉系统的信号处理 25
视觉系统的通路 26
突触连接的会聚和发散 28
神经节细胞和外膝核细胞的感受野 29
感受野的概念 29
视网膜的输出 29
神经节细胞和外膝核细胞的感受野组构 29
感受野的大小 32
神经节细胞和外膝核细胞的分类 32
神经节细胞和外膝核细胞传递何种信息? 32
专题 2.1 探索皮层的策略 33
皮层感受野 34
简单细胞的反应 34
简单感受野的生成 38
复杂细胞的反应 40
对运动刺激的反应 40
对有终端的线条有反应的皮层神经元 41
复杂细胞感受野的形成 42
感受野:形状知觉单元 43
第3章 视皮层的功能构筑 49
视网膜区域映射图 50
从外膝核到视皮层 51
视网膜到外膝核的输入分聚 51
视皮层的细胞构筑 52
皮层的输入、输出和分层 53
眼优势柱 54
成像技术显示眼优势柱 56
朝向柱 56
色觉细胞集群 58
大细胞通路和小细胞通路在V1和视区2(V2)之间的连接 59
眼优势柱和朝向柱的关系 60
皮层内的水平联系 61
从两眼输入信号构建单一、统一的视野 62
专题3.1 胼胝体 63
摘要与插图
第1部分神经系统导论
这篇导论为以后各章详细阐述神经信号运作、发育和功能提供了一个总体框架。对大脑感兴趣,却对神经生物学并不熟悉的读者,常常苦于不能抓住主题。例如,神经生物学的术语来自解剖学、电学、生物化学和分子生物学等众多学科,林林总总。但是,由于神经系统的结构是如此精巧,而神经信号运作又有如许专门化的特征,这种情况的出现是不可避免的。
有鉴于此,本书的前3章为第一次接触神经生物学的读者们概括介绍了关键的概念和定义。第1章将阐述神经细胞及其连接的主要形态学、生理学和分子水平的性质。视网膜结构清晰,对其信号加工处理已了解得相当清楚,我们把它作为实例加以描述,其主要优点是,从一开始,视网膜细胞所产生的电信号就能直接与感知相关起来,这使我们能在细胞水平认识我们看待世界的方式的特征。在第2章、第3章中将描述信号如何进一步从眼睛传送至大脑皮层,而沿着这条通路,通过精细的相互连接,信号又如何以一种令人惊叹的方式转换其意义。这些实验完成得十分漂亮和清晰,即使背景知识有限的读者,也有可能了解其内容,看到对脑的研究正在走向何方,并深刻理解在以后章节中所描述的细胞分子机制的细致研究为何如此引人入胜、如此重要。
在这一阶段,我们的主要目标是,使不熟悉这一领域的读者从一开始便能思考脑的功能,并看到功能如何依赖、如何相关于神经细胞所使用的细胞机制。为了达到这一目的,在阐述内容时仅介绍重要的概念和事实,其余的将在随后的章节中论及。
第1章
信号运作和组构原理
为了描述神经细胞(神经元)的信号,并把这些信号与我们对外部世界的感知关联起来,本章我们选择了视网膜作为研究对象(参阅第18章)。视网膜中发生的初始过程导致视觉,它的有序结构使人们有可能将信号从神经元追踪至大脑,直至我们对外部世界的感知。本章介绍的基本信息,将为读者了解随后对信号运作感知的详细论述作好准备。
在神经细胞中,信息是通过电信号传递的。一个关键的任务是解码其传递的信号的内容。神经信号的意义取决于神经纤维是在何处产生的,又走向何处,也取决于信号本身的频率和规律性。视神经中的信号携带来自视网膜的视觉信息,指尖的一根感觉神经中相似的冲动传递的则是触觉信息,而一根运动神经中的冲动产生肌肉运动。在大脑中,单个神经细胞接受来自成千上万个其他细胞的输入。通过对这一信息的整合,神经细胞建立一种新的信号。这种新信号能传达复杂的涵义,如在视野中存在垂直的光条,或手指接触的砂纸粗糙的纹理等。
神经系统的许多区域(包括视网膜)的一种简化的特征是,具有相似特性的神经细胞成群聚在一起,或排列成层,或聚集成簇。另一种简化的特征是,大脑用来处理信息的电信号是定型的,这些信号由流过细胞膜的电流产生的电压变化所组成。神经元仅采用两类电信号:只在短距离内扩布的局部性分级电位,以及长距离迅速传导的动作电位。
在特化的接头(称为突触)处,神经元之间进行信息传递。在突触处,到达的信号释放化学递质,与靶细胞膜上的特异的化学受体分子结合,这种相互作用产生局部的分级电位,或使靶细胞兴奋,或使靶细胞抑制,取决于所参与的递质和受体。突触传递的效率为其活动、激素和药物所修饰。
在发育过程中,神经元依赖于来自其他细胞的分子信号。这些信号决定神经元的外形、位置、存活、递质,以及它与什么靶细胞相连接。一旦成熟后,大多数神经细胞不能分裂。神经元周围环境中的一些分子影响其损伤后修复的能力。
中枢神经系统(CNS)是活跃的细胞集群,不断接收信息、分析信息、感知信息,并作出决定。大脑也通过发动并产生协调有效的肌肉收