内容简介
《物理学中的拓扑与几何(英文影印版)》讲述了在物理学中应用的拓扑和几何知识,包括流形、张量场、流形上的微积分、纤维丛理论等。地,本书讲解了这些理论在物理学中的诸多应用。
随着理论物理的发展,拓扑与几何这些数学理论在物理中的应用日益广泛。地,在理论物理近些年的一些新理论中,拓扑和几何的应用更加重要。本书系统而深入,其引进能够给理论物理工作者以很大帮助。
目录
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 base of Topology, Metric, Norm. . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Connectedness, Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 Topological Charges in Physics. . . . . . . . . . . . . . . . . . . . . . . . 48
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1 Charts and Atlases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Smooth Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Tangent Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5 Mappings of Manifolds, Submanifolds . . . . . . . . . . . . . . . . . . . 71
3.6 Frobenius' Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.7 Examples from Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.7.1 Classical Point Mechanics . . . . . . . . . . . . . . . . . . . . . . 82
3.7.2 Classical and Quantum Mechanics . . . . . . . . . . . . . . . . 84
3.7.3 Classical Point Mechanics Under
Momentum Constraints . . . . . . . . . . . . . . . . . . . . . . . . 86
3.7.4 Classical Mechanics Under Velocity Constraints. . . . . . . 93
3.7.5 Thermodynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4 Tensor Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.1 Tensor Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2 Exterior Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3 Tensor Fields and Exterior Forms . . . . . . . . . . . . . . . . . . . . . . 106
4.4 Exterior Differential Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 110
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5 Integration, Homology and Cohomology . . . . . . . . . . . . . . . . . . . . 115
5.1 Prelude in Euclidean Space. . . . . . . . . . . . . .