广义相对论的3+1形式-数值相对论基础-(影印版)

价格 54.00对比
发货 广东东莞市
销量 暂无
评价 已有 0 条评价
人气 已有 15 人关注
数量
+-
库存100
 
联系方式
加关注0

新图书资料发布

VIP   VIP会员第1年
资料未认证
保证金未缴纳

内容简介

《广义相对论的3+1形式》详细地讲解了3+1形式的广义相对论和数值相对论基础。本书从研究相对论所必备的数学工具,如微分几何、超曲面的嵌入等讲起,逐步引入了爱因斯坦方程、物质和电磁场方程等的3+1分解。之后,通过更高等的数学工具,如共形变换等,讨论了现代相对论的一些重要问题。

目录

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Basic Differential Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Differentiable Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Notion of Manifold. . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Vectors on a Manifold . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Linear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 Fields on a Manifold. . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Pseudo-Riemannian Manifolds . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Metric Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Signature and Orthonormal bases. . . . . . . . . . . . . . . 14
2.3.3 Metric Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Levi-Civita Tensor . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Covariant Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Affine Connection on a Manifold . . . . . . . . . . . . . . . 17
2.4.2 Levi-Civita Connection. . . . . . . . . . . . . . . . . . . . . . 20
2.4.3 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.4 Weyl Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Lie Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.1 Lie Derivative of a Vector Field. . . . . . . . . . . . . . . . 25
2.5.2 Generalization to Any Tensor Field . . . . . . . . . . . . . 27
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3 Geometry of Hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 framework and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Hypersurface Embedded in Spacetime. . . . . . . . . . . . . . . . . . 30
3.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Normal Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Intrinsic Curvature . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.4 Extrinsic Curvature . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.5 Examples: Surfaces Embedded in the
Euclidean Space R3 . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.6 An Example in Minkowski Spacetime:
The Hyperbolic Space H3 . . . . . . . . . . . . . . . . . . . . 40
3.4 Spac

举报收藏 0
网站首页  |  关于我们  |  联系方式  |  用户协议  |  隐私政策  |  版权声明  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  粤ICP备2021111040号