内容简介
众所周知,在生活中统计学无处不在,每件事、每个人似乎都可以用统计数字来加以说明。是进入大数据时代以后,统计学更是成为炙手可热的学问,它可以帮我们解决很多重要的社会问题,并对“黑天鹅”事件和未来做出预测。
但不可否认的是,统计学本身因为囊括大量的数学内容及专业术语,以至于让人觉得高深莫测、很难亲近。
《赤裸裸的统计学》的作者查尔斯·惠伦“扒光”了统计学“沉闷的外衣”,用生活中有趣的案例、直观的图表、生动诙谐的语言风格,揭开了统计学、大数据和数字的“神秘面纱”,让我们知道期刊、媒体新闻、民意调研中公布的数字从何而来,轻松掌握判断这些统计数字“是否在撒谎”的秘籍。同时,作者还将统计学的工具带入日常生活中,告诉我们为什么不要买彩票,为什么你家附近的商场会知道你怀孕的消息并给你寄来纸尿裤的优惠券,等等。
大数据时代你必须掌握的统计学知识,全部都在《赤裸裸的统计学》中。从今天开始,好好使用统计学和数据吧!
目录
引言 我为什么憎恶微积分却偏爱统计学?
第1章 统计学是大数据时代手可热的学问
基尼系数是否是衡量社会分配公平程度美的指标?视频网站是如何知道你喜欢的电影类型的?祈祷真的能让病人的术后康复状况改善吗?是什么导致自闭症发病率一直走高?哪些人可能成为恐怖分子?
第2章 描述统计学
你一直想买的一条连衣裙,商场售价为4999元,先降价25%后再提价25%,你能算出这条连衣裙的售价是多少吗?
第3章 统计数字会撒谎
1950年人们的平均时薪是1美元,2012年人们的平均时薪是5美元,你觉得我们的工资水平涨了吗?
第4章 相关性与相关系数
视频网站根本不知道我是谁,但它又是怎么知道我喜欢看人物纪录片而不是电视连续剧、动作片或科幻片的?
第5章 概率与期望值
买福利彩票,去赌场豪赌、投资股票或期货,哪种方式让你跻身《福布斯》富豪排行榜的可能性更大?
第6章 蒙提·霍尔悖论
在《让我们做个交易》节目中,主持人打开的3号门后面是一头羊,在剩下的1号门和2号门中必定有一扇门后面是汽车,你应该如何选择才能中大奖?
第7章 黑天鹅事件
1%的小概率风险如何在2008年成为击垮美国华尔街的“黑天鹅”,并毁了金融体系。
第8章 数据与偏见
2012年,《科学》杂志刊登了一项惊人的发现:在求偶期多次遭受雌性果蝇冷落的雄性果蝇会“借酒消愁”。那么,这些果蝇是如何一醉方休的?
第9章 中心极限定理
一辆坐满肥胖乘客的抛锚客车停在你家附近的路上,你推断一下,它的目的地是马拉松比赛场地,还是香肠节展厅?
第10章 统计推断与假设检验
垃圾邮件过滤、筛查、恐怖分子追捕,我们能容忍哪件事情出错,又有哪件事情是可以“睁一只眼闭一只眼”的?
第11章 民意测验与误差幅度
民调结果显示,有89%的美国人不相信政府会做正确的事,有46%的美国人认可的工作表现。这个结果可以代表美国人的真实想法吗?
第12章 回归分析与线性关系
你认为什么样的工作压力更容易使职场人士猝死,是“缺乏控制力和话语权”的工作,还是“权力大,责任也大”的工作?
第13章 致命的回归错误
世界上3本声望的医学期刊上刊登的49篇学术研究论文中有1/3后来都被推翻了,所以,“尽量不要用你的回归分析研究杀人”。
第14章 项目评估与“反现实”
哈佛大学等世界大学的毕业生进入社会后,其收入往往高于一般大学的毕业生,让他们获得高收入的究竟是常春藤大学的教育优势,还是他们本身就很出色?
结束语统计学能够帮忙解决的5个问题
致谢
摘要与插图
假设你所生活的城市正在举办一场马拉松比赛。来自世界各国的运动员们齐聚一堂,准备一决高下,但他们中的许多人都不会说英语。按照比赛组委会的安排,每位运动员在比赛当天的早上签到之后,会被随机分配到一辆驶往起点的长途客车。不凑巧的是,其中的一辆长途客车没有按规定到达比赛现场,为了省去大量额外的运算,我们假设这辆客车上没有一个人有手机,而且车里也没有装载定位系统(GPS)设备。作为市民中的一员,你加入了搜寻长途客车的队伍。偏偏就那么巧,在你家附近有一辆抛锚的长途客车,车上坐着一大群面露不快的乘客,他们中没有一个人会说英语。这肯定就是那辆失踪的车,你将会成为这座城市的英雄!但就在此时,一个疑惑出现在你的脑中:这辆车上的乘客看上去都“不瘦”,准确地说,他们都很胖。粗略扫一眼这些人,你估计这些乘客的平均体重至少有220磅(100公斤)。随机分配的马拉松运动员的体重不可能这么重,你打开对讲机对搜寻总部汇报道:“不是这辆客车,请继续搜寻。”
进一步的调查证实了你的判断是正确的。赶到现场的翻译人员经过一番交流后,你终于知道这辆抛锚的客车原本是要前往香肠节会场的,正好这一届的香肠节也在这座城市举办,连日期都碰巧相同。而且从视觉角度考虑,参加香肠节的人有可能也穿着宽松的运动长裤。
祝贺你!如果你能够体会上述的推理过程,也就是说,通过快速观察车上乘客的体型来判断他们并非马拉松运动员,那么你就已经领会了中心极限定理的基本理念,剩下的工作就是在这个基本框架下充实细节了。一旦你理解了中心极限定理,统计推断的绝大多数形式将会变得直观。
中心极限定理的核心要义就是,一个大型样本的正确抽样与其所代表的群体存在相似关系。当然,每个样本之间肯定会存在差异(比如前往马拉松起点的这么多辆客车,每辆客车乘客的组成都不可能相同),但是任一样本与整体之间存在巨大差异的概率是较低的。正是因为这个逻辑,让你对那辆载满肥胖乘客的抛锚客车做出了快速判断。的确有胖人参加马拉松比赛,每一次马拉松比赛中都会有几百名参赛者的体重在200磅以上,但绝大多数的马拉松运动员还是比较瘦的。因此,如此之多的“重量级”运动员被随机安排到同一辆客车上的概率可以说是很低的,所以你有理由认为这不是那辆失踪的马拉松客车。当然,有可能你的判断是错的,但概率告诉我们你更有可能是对的。
这就是中心极限定理背后的基本经验。如果我们再附加一些统计学工具,就能将正确或错误的可能性进行量化。例如,在一场有10000名选手参加的马拉松比赛中,运动员的平均体重为155磅,我们可以算出,一个包含60名选手(也就是一辆客车的载客量)的随机样本的平均体重大于或等于220磅的概率不足1/100。但在此刻,让我们还是从直觉出发进行计算。通过运用中心极限定理,我们能够得出如下推理,这些推理都将会在下一章里进行深入阐述。
1.如果我们掌握了某个群体的具体信息,就能推理出从这个群体中正确抽取的随机样本的情况。举个例子,假设某学校的校长手里有本校所有学生的统考成绩(平均分、标准差等),这就相当于一个相关人口数据,再过一个星期的时间,区领导将会来学校随机抽取100名学生进行一次类似统考的测验,这100名学生的成绩—也就是一个样本,将会作为考核该校教学质量的指标。
随机抽取的这100名学生的考试成绩是否能够准确地反映出全校学生的平均水平呢?校长需要为此担心吗?根据中心极限定理,这100名学生作为一个随机样本,其平均成绩不会与全校学生的平均成绩产生较大差异。
2.如果我们掌握了某个正确抽取的