内容简介
本书针对金属增材制造加工过行系统研究,基于计算流体动力学方法研究金属增材制造工艺过程中的流体问题。第1章为绪论。第2~4章研究金属增材制造打印机腔体内部流场及颗粒分布特,并设计新颖的流体罩和负压管分别对打印机腔体内部流行优化及溅射颗粒清除。第5~9章主要研究金属增材制造加工过程中熔池特,其中,第5章研究金属熔池动力学特,第6章研究外加磁场对金属增材制造过程中熔池及凝固过程的影响,第7章和第8章研究金属增材制造过程中工件内部单气孔缺陷和多气孔缺陷的演化过程。第9章研究金属增材制造工件激光清洗工艺,以控制工件表面粗糙度。本书内容系统,新颖,面向从事增材制造和激光加工等相关领域的科研人员,以及关注制造、智能制造的专家学者和普通读者。
目录
Chapter 1 Introduction 11.1 Background 21.2 Motivation 31.3 Outline 4Chapter 2 Investigation of the flow field in Laser-based Powder Bed Fusion manufacturing 52.1 Introduction 72.2 Simulation model of the L-PBF printer 102.2.1 Problem description 102.2.2 Geometric model of the L-PBF printer 112.2.3 Numerical model of the L-PBF printer 122.3 Simulation results 162.3.1 Distribution of the flow field 162.3.2 Distribution of the temperature field 212.3.3 Distribution of spatter particles 232.4 Conclusions 28References 30Chapter 3 Investigation of optimizing the flow field with fluid cover in Laser-based Powder Bed Fusion manufacturing process 333.1 Introduction 353.2 Simulation model of L-PBF printer 373.2.1 Geometry of L-PBF printer with a fluid ilizing cover 373.2.2 Numerical model of printer with a fluid ilizing cover 373.2.3 Mesh of L-PBF printer with a fluid ilizing cover 393.2.4 Model of the fluid ilizing cover and particles 403.3 Simulation results and discussion 433.3.1 Influence of the fluid ilizing cover on the flow field 433.3.2 Influence of fluid ilizing cover on particle distribution and removing rate 473.4 Summary and conclusions 51References 53Chapter 4 Numerical investigation of controlling spatters with negative pressure pipe in Laser-based Powder Bed Fusion process 544.1 Introduction 564.2 Simulation model of L-PBF printer 594.2.1 Geometric model of L-PBF printer 594.2.2 Numerical model of L-PBF printer 614.3 Simulation results and discussions 644.3.1 Effect of pipe diameter 684.3.2 Effect of outlet flow rate 704.3.3 Effect of initial particle velocity 744.4 Summary and conclusions 76References 78Chapter 5 Evolution of molten pool during Laser-based Powder Bed Fusion of Ti-6Al-4V 805.1 Introduction 825.2 Modeling approach and numerical simulation 855.2.1 Model elishing and assumptions 855.2.2 Governing equations 875.2.3 Heat source model 875.2.4 Phase change 885.2.5 Boundary conditions setup 895.2.6 Mesh generation 905.3 Experimental procedures 915.4 Results and discussions 925.4.1 Surface temperature distribution and morphology 925.4.2 Formation and solidification of the molten pool 945.4.3 Development of the evaporation region 985.5 Conclusions 101References 103Chapter 6 Simulation of surface deformation control during Laser-based Powder Bed Fusion Al-Si-10Mg powder using an external magic field 1076.1 Introduction 1096.2 Modeling and simulation 1126.2.1 Modeling of L-PBF 1126.2.2 Mesh model and basic assumptions 1136.2.3 Heat transfer conditions 1146.2.4 Marangoni convection 1156.2.5 Phase-change material 1156.2.6 Lorentorce 1166.3 Results 1186.3.1 Velocity field in the molten pool 1186.3.2 Lorentorce in the MP 1216.3.3 Surface deformation of the sample 1236.4 Conclusions 127References 128Chapter 7 Influence of laser post- processing on pore evolution of Ti-6Al-4V alloy by Laser-based Powder Bed Fusion 1317.1 Introduction 1337.2 Experimental procedures 1367.2.1 Sample fabrication 1367.2.2 Determination of porosity by micro-CT 1377.3 Modeling and simulation 1407.3.1 Numerical model 1407.3.2 Moving Gaussian heat source 1437.3.3 Thermal boundary conditions 1437.3.4 Marangoni effect, surface tension and recoil pressure 1447.4 Numerical results and discussion 1457.5 Conclusions 152References 153Chapter 8 Evolution of multi pores in Ti-6Al-4V/Al-Si-10Mg alloy during laser post-processing 1578.1 Introduction 1598.2 Experimental procedures 1628.2.1 Sample preparation 1628.2.2 Detection of porosity by mirco-CT 1628.3 Model and simulation 1658.3.1 Simulation model 1658.3.2 Gaussian heat source 1678.3.3 Latent heat of phase change 1688.3.4 Level-set method 1698.3.5 Boundary conditions 1698.4 Numerical results and discussion 1718.5 Conclusions 177References 179Chapter 9 Investigation of laser polishing of four Laser-based Powder Bed Fusion alloy samples 1829.1 Introduction 1849.2 Model and theoretical calculation 1889.2.1 Physical model and assumptions 1889.2.2 Governing equations and boundary conditions 1909.2.3 Simulation results 1929.3 Experimental methods 1959.3.1 Sample fabrication 1959.3.2 Morphology observation by 3D optical profiler 1989.3.3 Experimental results 1999.4 Conclusions 206References 208