原子物理学

价格 128.00对比
发货 全国
销量 暂无
评价 已有 0 条评价
人气 已有 13 人关注
数量
+-
库存100
 
联系方式
加关注0

DESTOON网站管理系统

管理员第1年
资料未认证
保证金未缴纳
  • 上次登录 今天 10:16
  • 姓名 (先生)  

内容简介

本书主要是为本科原子物理课程编写的教材,前几章中含的原子物理内容对于本科生来说是易于理解。本书介绍了原子物理的*发展,及其在原子的玻色-爱因凝聚中物质波干涉测量和用捕获离行量子计算中的应用,为了弥补一般同类著作仅用量子理论处理原子结果的不足,本书强调实验基础,在后面的章节中尤其如此。本书还附有大量供读者联系。

目录

1 早期原子物理学1.1 导引1.2 氢原子光谱1.3 Bohr理论1.4 相对论效应1.5 Moseley和原子数1.6 辐射衰变1.7 爱因A系数和B系数1.8 Zeeman效应1.8.1 Zeeman效应的实验观察1.9 原子单结br/>2 氢原子2.1 Schrodinger方程2.1.1 角向方程的解2.1.2 径向方程的解2.2 跃迁2.2.1 选择定则2.2.2 对的积分2.2.3 宇称2.3 精细结构2.3.1 电子的自旋2.3.2 自旋一轨道相互作用2.3.3 氢原子的精细结构2.3.4 Larab位移2.3.5 精细能级之间的跃迁
3 氦原子3.1 氦原子的基态3.2 氦原子的激发态3.2.1 自旋本征态3.2.2 氦原子中的跃迁3.3 氦原子中的积分估计3.3.1 基态3.3.2 激发态:直接积分3.3.3 激发态:交换积分
4 碱金属4.1 壳层结构和周期表4.2 量子数亏损4.3 中心似4.4 Schr6dinger方程的数值解4.4.1 自洽解4.5 自旋-轨道相互作用:量子方法4.6 碱金属的精细结构4.6.1 精细结构跃迁的相对强度
5 L-S耦合方式5.1 LS耦合方式的精细结构5.2 偶合方式5.3 居问耦合:不同耦合方式之间的跃迁5.4 L-S耦合方式的选择定则5.5 Zeeman效应5.6 小结
6 超精细结构和同位素移位6.1 超精细结构6.1.电子的超精细结构6.1.2 氢微波激射器6.1.3 z≠0时的超精细结构6.1.4 超精细结构与精细结构的比较6.2 同位素移位6.2.1 质量效应6.2.2 体积移位6.2.3 原子揭示的原子核信息6.3 Zeeman效应和超精细结构6.3.1 弱场下的Zeeman效应BA6.3.3 中间部分的场力6.4 超精细结构的测量6.4.1 原子束技术6.4.2 原子钟
7 原子与辐射的相互作用7.1 方程的建立7.1.1 振荡电场的扰动7.1.2 旋似7.2 爱因B系数7.3 与单色辐射的相互作用7.3.1 π脉冲与π/2脉冲7.3.2 Bloch矢量和Bloch球面7.4 Ramsey条纹7.5 辐射阻尼7.5.1 经典偶极辐射阻尼7.5.2 光Bloch球面7.6 光吸收截面7.6.1 纯辐射展宽截面7.6.2 饱和强度7.6.3率展宽7.7 交流Stark效应/光频移7.8 半经典理论注解7.9 结论
8 无Doppler激光光谱8.1 谱线的Doppler展宽8.2 交叉束技术8.3 饱和吸收光谱8.3.1 饱和吸收光谱的原理8.3.2 饱和吸收光谱的穿越共振8.4 双光子光谱8.5 激光光谱的校准8.5.1 相对频率的校准8.5.2 校准8.5.3 光频梳
9 原子冷却与捕陷9.1 散射力9.2 减慢原子束9.2.1 啁啾冷却9.3 光学黏胶技术9.3.1 Doppler冷却的极限9.4 磁光阱9.5 偶极力导论9.6 偶极力理论9.6.1 光学晶格9.7 SisyphtJs冷却技术9.7.1 概论9.7.2 Sisyphus冷却9.7.3 Sisyphus冷却机制的极限9.8 Raman跃迁9.8.1 Raman跃迁的速度选择9.8.2 Raman冷却9.9 原子喷泉9.1 0结br/>10 磁捕陷、蒸发冷却和Bose-Einstein凝聚10.1 磁捕陷的原理10.2 磁捕陷10.2.1 径向约束10.2.2 轴向约束10.3 蒸发冷却10.4 Bose-Einstein凝聚10.5 捕陷原子蒸气中的Bose-Einstein凝聚10.5.1 散射长度10.6 一种Bose-Einstein凝聚体10.7 Bose凝聚气体的质10.7.1 声速10.7.2 消退长度10.7.3 Bose-Einstein凝聚的相干10.7.4 原子激光10.8结br/>11 原子干涉11.1 杨氏双缝实验11.2 原子的衍射光栅11.3 三光栅干涉仪11.4 旋转的测量11.5 光对原子的衍射11.5.1 Raman跃迁干涉测量技术11.6结
12 离子阱12.1 电场中离子的受力12.2 Earnshaw定理12.3 Paul阱12.3.1 旋转马鞍上小球衡12.3.2 交流场中的有效势12.3.3 线Paul阱12.4 缓冲气冷却12.5 激光冷却捕陷离子12.6 量子跳跃12.7 Penning阱和Paul阱12.7.1 Penning阱12.7.2 离子的质谱12.7.3 电子的反常磁矩12.8 电子束离子阱12.9 解析侧带冷却12.1 0 离子结
13 量子计算13.1 量子比特及其质13.1.1 纠缠13.2 量子逻辑门13.2.1 设计OT门13.3 量子并行算法13.4 量子计算机综述13.5 退相干和量子纠错13.6结
附录A 微扰理论A.1 微扰理论的数学A.2 频率经典振子的相互作用附录B 静电能的计算附录C 磁偶极跃迁附录D 饱和吸收的线形附录.E Raman跃迁和双光子跃迁E.1 Raman跃迁E.2 双光子跃迁附录F Bose-Einstein凝聚有关统计力学知识F.1 光子的统计力学F.2 Bose-Einstein凝聚F.2.1 谐振阱中的Bose-Einstein凝聚参考文献索引

摘要与插图

Early atomic physicspan style="font-family:宋体">.1 ;IntroductionThe origins of atomic physies were entwined with the development ofquantum mechanics itself ever since the first model of the hydrogenatom by Bohr Tins introductory chapter surveys some of the earl),ideasincluding Einstein’s treatment of the interaction of atoms withradiationand a classical treatment of the Zeeman eriectThese meth—odsdeveloped before the advent of the SchrSdinger equationremainuseful as an intuitive way of thi about atomic structure and tran-sitionetween the energy levels The‘proper’description in terms ofatomic wavefunctions is presented in sequent chapters

;Before describing the theory of an atom with one electronsome ex·perimental facts are presented This ordering of experiment followedby explanation reflects the author’s opinion that atomic physics shouldnot be presented as applied quantum mechanicsbut it should be tno-tix~ted by the desire to understand experiments This represents whatreally happens in research where most advances come about through theinterplay of theory and experimentpan>2 ;Spectrum of atomic hydrogenIt has long been known that the speCtrum of light emitted by an elementis characteristic of that elementeg sodium in a street lampor burn—ing in a flameproduces a distinctive yellow lightThis crude form ofspectroscopyin which the colour is seen by eyeformed the basis for asimple chemical analysisA more sophisticated approach using a prismor diffraction gratingto disperse the light inside a spectrograph showsthat the characteristic spectrum for atoms is composed of discrete linesthat are the‘fingerprint’of the element As early as the 1880sFraun—hofer used a spectrograph to measure the wavelength of linesthat hadnot been seen beforein light from the sun and he deduced the existence of a new eJement called heliumIn contrast to atomsthe spectraof molecules(even the simplest diatomic ones)contain many closelyspaced lines that form characteristic molecular bandslarge moleculesand solidsusually have nearly continuous spectra with few sharp fen-tures In 1888the Swedish professor J Rydberg found that the spectral

.....

举报收藏 0
网站首页  |  关于我们  |  联系方式  |  用户协议  |  隐私政策  |  版权声明  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  粤ICP备2021111040号